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a b s t r a c t

Brain image segmentation is of great importance not only for clinical use but also for neuroscience
research. Recent developments in deep neural networks (DNNs) have led to the application of DNNs
to brain image segmentation, which required extensive human annotations of whole brain images.
Annotating three-dimensional brain images requires laborious efforts by expert anatomists because
of the differences among images in terms of their dimensionality, noise, contrast, or ambiguous
boundaries that even prevent these experts from necessarily attaining consistency. This paper proposes
a semi-supervised learning framework to train a DNN based on a relatively small number of annotated
(labeled) images, named atlases, but also a relatively large number of unlabeled images by leveraging
image registration to attach pseudo-labels to images that were originally unlabeled. We applied our
proposed method to two different datasets: open human brain images and our original marmoset
brain images. When provided with the same number of atlases for training, we found our method
achieved superior and more stable segmentation results than those by existing registration-based and
DNN-based methods.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Segmentation of brain images plays an important role not
only in clinical diagnosis to help assess neurological diseases but
also in basic neuroscience research. In brain image segmenta-
tion, given a brain image typically acquired by magnetic reso-
nance imaging (MRI), we estimate an annotated (labeled) image,
which is categorized into several anatomical/structural regions
of which the set has been prepared a priori for every voxel.
The segmentation provides a quantitative evaluation of brain
tissue volumetry, and it enables objective diagnosis and research
rather than visual inspection by experts. The volume change in
some brain regions can be used as an important biomarker; for
example, neurodegenerative diseases such as Alzheimer’s disease
are known to be associated with shrinkage of some brain re-
gions (Giorgio & De Stefano, 2013). Basic neuroscience research
such as connectomics also demands segmentation for its pre- or
post-processing (Smith, Tournier, Calamante, & Connelly, 2012).

The most straightforward way to segment brain images is to
manually annotate every voxel of a brain image. In reality, how-
ever, this approach is difficult because of the presence of noise
and/or differences in the contrast between brain images. Apart
from this, the appearance of some boundaries between different
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brain regions varies, thereby complicating the annotation even by
expert anatomists due to the lack of consistent criteria. Moreover,
because brain images are three-dimensional (3D), it is laborious
to attach labels in a voxel-wise manner (Hanbury, 2008). In
contrast, simply acquiring brain images is relatively easy; there
are thousands or tens of thousands of brain images available, for
example, from Human Connectome Project.1 In view of the above,
automatic brain segmentation techniques have started attracting
much attention as neuroscience enters the era of big data.

Image registration has been used to automatically segment
brain images (Cabezas, Oliver, Lladó, Freixenet, & Cuadra, 2011).
This technique estimates the spatial correspondence between a
manually labeled 3D brain image, known as an atlas, and another
3D brain image (target brain) that needs to be segmented. After
registration, the label information of the atlas is transferred to
the target brain according to the estimated correspondence. This
method is advantageous because the registration process often
effectively preserves the local continuity of the two brains, hence
preserving the topological structure of the segmented regions
in the target brain. On the other hand, the method may gen-
erate some segmentation errors especially near the boundaries
between regions, because it only relies on the structural sim-
ilarity between the two brains. In addition, image registration

1 Human Connectome Project: http://www.humanconnectomeproject.org/.
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usually estimates the correspondence by using an iterative ap-
proach to achieve 3D deformation, which is computationally very
expensive.

In recent years, a number of segmentation methods incor-
porating machine-learning-based image processing (Ashburner &
Friston, 2005; Schnell, Saur, Kreher, Hennig, Burkhardt, & Kiselev,
2009; Zikic, Glocker, & Criminisi, 2013), especially deep neural
networks (DNNs), has been reported (de Brébisson & Montana,
2015; Moeskops, Viergever, Mendrik, de Vries, Benders, & Išgum,
2016). The approach involves training a DNN based on a large set
of human annotated atlases, after which the DNN is applied to
the brain images for segmentation. Although training the DNN
is time consuming, segmentation based on the trained DNN is
computationally efficient, because of its feedforward architecture.
Another advantage of DNNs is their generalization ability; owing
to their architecture incorporating hierarchically arranged convo-
lution and pooling layers, they are robust against shift/rotation
and blurring in the given image. Owing to these effective charac-
teristics, segmentation based on DNNs has proven to be superior
to other methods based on conventional machine learning (Chen,
Dou, Yu, Qin, & Heng, 2017; Litjens, Kooi, Bejnordi, Setio, Ciompi,
Ghafoorian, van der Laak, van Ginneken, & Sánchez, 2017; Zhang,
Li, Deng, Wang, Lin, Ji, & Shen, 2015).

In this study, we propose a semi-supervised learning ap-
proach, which attempts to train a DNN based on a relatively
small set of annotated (labeled) atlases and a relatively large
set of unlabeled brain images. Using image registration between
the atlases and other unlabeled images, we attach a pseudo-
label to every voxel in the unlabeled images. After this step,
we train a DNN based on a combined dataset of the atlases
and pseudo-annotated brain images. However, this naïve idea
is not necessarily effective, because the data-augmented dataset
for training a DNN should include label errors stemming from
unsatisfactory image registration. It should be noted that if image
registration was perfect, there would be no need to train a
DNN for segmentation, because registration-based segmentation,
which we call label propagation (LP), would also be expected
to function in a perfect manner. We overcome the problem
associated with erroneous labeling by employing a probabilistic
model in which the true label of an originally unlabeled image is
assumed to be an unobservable (hence a hidden) variable, and the
pseudo-label attached by image registration is probabilistically
observed by adding spatial noise to the true label. We train
this probabilistic model by incorporating a DNN structural model
using an expectation–maximization (EM) algorithm and estimate
the true label image and the parameters of the DNN simultane-
ously. The new method is designed to recover the incorrect labels
attached to the originally unlabeled images within the E-step of
the EM algorithm.

Our new method is evaluated by applying it to open bench-
mark human images registered in the Internet Brain Segmenta-
tion Repository (IBSR) and our original marmoset brain image
dataset acquired for the Brain/MINDS project (Okano, Miyawaki,
& Kasai, 2015; Okano, Sasaki, Yamamori, Iriki, Shimogori, Ya-
maguchi, Kasai, & Miyawaki, 2016). In comparison with exist-
ing registration-based and DNN-based methods, the proposed
method showed higher and more stable segmentation accuracies
than existing methods, when using the same number of labeled
images.

2. Related work

2.1. Image registration

Given a set of a reference image I (here, labeled) and a source
image J (here, unlabeled), image registration estimates spatial
transformation ϕ : Ω → Ω that satisfies

I(ϕ−1(x)) ≈ J(x) (∀x ∈ Ω), (1)

where each image is a function from each voxel to its set of
intensity I : Ω → RK , where K is the number of the images using
our analysis, and Ω ⊂ R3 is the 3D region on which the image
voxels are defined. Let the reference image I be associated with
a labeled image LI : Ω → {0, 1}C , annotated, i.e., labeled, by an
expert, where C is the number of labels. According to the label
propagation, we estimate the labeled image LJ of the unlabeled
source image J:

LJ (x)← LI (ϕ−1(x)). (2)

Among many existing image registration methods, large defor-
mation models such as a symmetric image normalization method
(SyN) (Avants, Epstein, Grossman, & Gee, 2008) achieved one of
the highest performances on human brain datasets (Klein, Ander-
sson, Ardekani, Ashburner, Avants, Chiang, Christensen, Collins,
Gee, Hellier, et al., 2009). They provide us with diffeomorphic
transformation which transforms a reference image I to a source
image J . Diffeomorphic mapping has several advantages; it in-
volves an inversion of the transformation, which can be used
to transform the source image to the reference image in an in-
verse manner. In addition, owing to the continuous application of
deformation, the topology of the brain is preserved and this pre-
vents folding, which is physically impossible (Tom Vercauteren,
Xavier Pennec, & Ayaches, 2009). According to the diffeomorphic
mapping, the transformation ϕ : Ω → Ω , which maps a point on
the reference image x ∈ Ω to another point on the source image,
is obtained by integrating the small time-dependent vector field
vt : Ω → R3, t ∈ [0, 1] starting from the identity transformation
φ0 at time t = 0 to the final one at time t = 1,

ϕ = φ1 = φ0 +

∫ 1

0
vt (φt )dt. (3)

The optimal vector field at each time step is obtained by solving
the optimization problem:

v̂ = argmin
v

(
S(I ◦ ϕ−1, J)+

∫ 1

0
∥Lvt∥

2
L2dt

)
. (4)

The objective function, which consists of the similarity measure
S between the two images and a regularization term to con-
trol the smoothness of the vector field, prevents the obtained
transformation from violating the topological correspondence. In
SyN, we simultaneously optimize two sets of the optimal vector
fields that transform the reference image and the source image to
intermediate images between them. The similarity measure is a
cross correlation between the two deformed images on the space
of the intermediate image.

Since the obtained segmentation often preserves the topology
of brain structures, the diffeomorphic transformation-based reg-
istration does not produce blob-like errors. On the other hand, the
transformation is prone to errors near the boundaries between
different regions, because the smoothness prior attached as the
regularization term prefers rather simple correspondence; hence,
it places less emphasis on the precise alignment of the two im-
ages, introducing some discrepancy near the regional boundaries.

2.2. Deep neural network

Deep neural networks (DNNs) have made significant progress
and have been used in many machine-learning applications. Con-
volutional neural networks (CNNs), which are variants of DNNs,
have shown excellent performance in a variety of image process-
ing applications. Each CNN comprises a number of convolutional
and pooling layers; the former convolves the input image with
a convolutional kernel and the latter introduces a certain shift-
invariance. The convolutional kernels are optimized to perform
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optimally in a specific supervised learning task, based on a train-
ing dataset that consists of pairs containing an input image and
output label. This optimization of the convolutional operations
enabled CNNs to exhibit the best performance in a data-driven
fashion on various image processing tasks, such as image recogni-
tion and semantic segmentation (Krizhevsky, Sutskever, & Hinton,
2012; Long, Shelhamer, & Darrell, 2015; Ren, He, Girshick, & Sun,
2015).

Inspired by the success of DNNs, methods based on deep
learning have been applied to image segmentation problems of
brains (Litjens et al., 2017). Many of these methods were in 2D,
i.e., they were applied to 2D slices of brain images, which cannot
make use of 3D information of the brain structure (de Brébisson &
Montana, 2015; Zhang et al., 2015). VoxResNet (Chen et al., 2017)
achieved the best performance among various DNN-based meth-
ods on the 2013 MICCAI MRBrainS challenge (Mendrik, Vincken,
Kuijf, Breeuwer, Bouvy, De Bresser, Alansary, De Bruijne, Carass,
El-Baz, et al., 2015). This method employs 3D convolutions, such
that it directly outputs a 3D label map LI ∈ {0, 1}L×W×H×C given
a 3D brain image I ∈ RL×W×H×D as input, where L,W ,H are
the number of the voxels of length, width, and height of the
image, respectively. Owing to its residual structures (He, Zhang,
Ren, & Sun, 2016), VoxResNet makes it possible to avoid the
gradient vanishing problem, thereby enabling the deepest 3D
convolutional architecture to be trained thus far.

In a recent paper it was pointed out that registration-based
methods and DNN-based methods are complimentary in terms
of segmentation error (Pai, Teng, Blair, Kallenberg, Dam, Sommer,
Igel, & Nielsen, 2017). Registration-based methods are advan-
tageous because of their preservation of the topology of brain
regions, but are disadvantageous because they sometimes intro-
duce segmentation errors near the boundaries between different
regions. These methods employ a strong prior information for the
spatial transformation to avoid foldings, which may work against
the exact alignment of two images. Segmentation based on DNNs,
on the other hand, gives relatively precise prediction near the
regional boundaries, leading to good segmentation, but is instead
sensitive to image noise in uniform regions, causing blob-like
errors.

3. Method

Although DNNs have shown good performance in terms of
brain image segmentation, they require a number of meticulously
annotated brain images for their training. A DNN trained on a
specific dataset often performs poorly when segmenting images
acquired by using different imaging experimental settings or from
different species. Since annotating 3D brain images requires labo-
rious works of expert anatomists, it is often difficult to prepare a
dataset to train the DNN for a specific kind of images for which
segmentation is required. Thus, there is considerable demand for
methods capable of facilitating image annotation.

A variety of data augmentation techniques are available to in-
crease the effective size of the training dataset. These techniques
were mostly developed for use in the field of computer vision:
cropping, flipping, scaling, applying spatial transformations, etc.
Preparation of a much larger dataset would be more effective
than data augmentation, because the latter approach essentially
involves usage of the same data a second time. However, the
former approach may not be feasible.

In this study, we propose a semi-supervised training algo-
rithm that trains a DNN-based segmentation model based not
only on annotated (labeled) brain images but also on unlabeled
brain images. When considering real-world applications, we of-
ten have a few annotated brain images and a large number
of unlabeled brain images. Based on the naïve idea, we sim-
ply attach pseudo-labels to the unlabeled brain images. This

Fig. 1. Graphical representation of our proposed method for a single unlabeled
brain image I . LI and L′I are unobservable true label and observable pseudo-label
images, respectively. θ and α are parameters of the DNN and its hyperparameter,
respectively.

enables us to train a DNN-based segmentation model on the
integrated dataset consisting of originally labeled brain images
and originally unlabeled but pseudo-labeled brain images. We use
label propagation (Avants et al., 2008) to assign pseudo-labels to
the unlabeled brain images; segmentation itself is performed by
transferring the labels attached to the annotated brain images.

The disadvantage of the above-mentioned idea, however, is
that the model is also trained on pseudo-labeled images of which
the labels inherently include mislabels produced by the label
propagation, especially near the regional boundaries. Our solution
to this problem is to propose a probabilistic model to incorporate
these mislabels attached by the label propagation; the estimation
of the probabilistic model corresponds to the identification of the
process whereby these mislabels are generated. More concretely,
in our probabilistic model, a DNN f parameterized with θ gives
the probability distribution for a true label image LI , given an
input brain image I; we assume that it follows a categorical
(multi-nomial) distribution:

p(LI |I, θ ) = Cat(LI |f (I, θ )). (5)

A pseudo-labeled image L′I is produced by adding spatial noise to
the true labeled image LI subsequently. Hence, the joint distribu-
tion is given by

p(L′I , LI , θ |I, α) = p(L′I |LI )p(LI |I, θ )p(θ |α), (6)

of which the graphical model (Bishop, 2006) is shown in Fig. 1.
The likelihood function p(L′I |LI ) of true label image LI given

pseudo-label L′I is

p(L′I |LI ) = softmax(D(L′I )/σ ), (7)

where D(L′I ) denotes distance transform (Borgefors, 1986) and σ is
the parameter for controlling the output’s randomness. Although
there are various choices of label smoothing such as a Gaussian
filter (Schindler, 2012), we used the distance transform to deal
with the boundaries of brain areas attached by different labels
in an effective manner. Let D(L′I )(x) represent the vector at voxel
x after applying the distance transform to the pseudo-label L′I ;
the dimensionality of this vector is the same as the number of
categories. The cth component of the vector is given by

D(L′I )(x)c =
{
|x− bc | (L′I (x)c = 1)
1− |x− fc | (otherwise),

(8)

where bc is the closest voxel to x in terms of the Euclidean
distance that satisfies L′I (bc)c = 0, and fc is the closest voxel
to x that satisfies L′I (fc)c = 1. The softmax function is applied
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to ensure that the values are in [0, 1] such that this observation
process is valid as a probability distribution. Further, p(θ |α) is
the prior probability of parameter θ , which is parameterized by
hyperparameter α.

Because the true label image is a hidden variable in our prob-
abilistic model, we rely on the expectation–maximization (EM)
algorithm (Bishop, 2006) to perform maximum a posteriori (MAP)
estimation of parameter θ , given the hyperparameter α. The
log posterior distribution of parameter θ given an observable
pseudo-label L′I and an assumed hyperparameter α is

ln p(θ |L′I , I, α) = ln p(L′I |I, θ )+ ln p(θ |α)+ const. (9)

Let q(LI ) be an arbitrary probability distribution (termed a trial
distribution) of true label LI . Then, we have

ln p(L′I |I, θ ) =
∫

q(LI ) ln p(L′I |I, θ )dLI (10)

=

∫
q(LI ) ln

p(L′I , LI |I, θ )
p(LI |L′I , I, θ )

dLI (11)

=

∫
q(LI ) ln p(L′I , LI |I, θ )dLI (12)

−

∫
q(LI ) ln q(LI )dLI

+KL(q(LI ) ∥ p(LI |L′I , I, θ ))

≥

∫
q(LI ){ln p(L′I |LI )+ ln p(LI |I, θ )}dLI

−

∫
q(LI ) ln q(LI )dLI . (13)

Here, KL(q(LI ) ∥ p(LI |L′I , I, θ )) is the Kullback–Leibler divergence
between p(LI |L′I , I, θ ) and q(LI ). Thus, the log posterior distribu-
tion, eq. (9), is lower bounded by

ln p(θ |L′I , I, α) ≥
∫

q(LI ) ln p(LI |I, θ )dLI + ln p(θ |α)+ const., (14)

which is the free energy function. The EM algorithm repeats the
E-step that makes the trial distribution becomes

q(LI ) = p(LI |L′I , I, θ ) ∝ p(L′I |LI )p(LI |I, θ ), (15)

and the M-step that maximizes the free energy function with
respect to parameter θ .

We reduced the computational cost by adopting the hard-EM
approximation (Papandreou, Chen, Murphy, & Yuille, 2015). In the
E-step, we obtain the MAP estimate of the true label:

L̂I = argmax
LI

p(LI |L′I , I, θ ), (16)

and in the M-step, we maximize the free energy function into
which the MAP estimate is plugged, with respect to the parameter
θ :∫

q(LI ) ln p(L′I , LI |I, θ )dLI + ln p(θ |α)+ const. (17)

≈ ln p(L′I , L̂I |I, θ )+ ln p(θ |α)+ const. (18)

= ln p(L̂I |I, θ )+ ln p(θ |α)+ const. (19)

That is, we replaced the trial distribution, eq. (15), with a delta
distribution centered at the MAP estimate.

Accordingly, our proposed semi-supervised learning algorithm
is shown in Algorithm 1. Since training a DNN model is time
consuming, we can terminate our algorithm at step 2 (that is,
without EM), which is termed the simple version of our proposed
method.

The algorithm presented here assumes that only one atlas
is provided. We introduce an ensemble learning approach for

enabling to use multiple atlases. Suppose that we have M atlases
with brain images and N unlabeled brain images. To allow our
evaluation to be rather independent from the possible bias to
each atlas, we prepare M datasets each consisting of one atlas
with brain image and M + N − 1 unlabeled images, where
each of the sole atlas is different between different datasets. We
independently apply the proposed method to the M datasets,
and estimate M parameters (θ1, . . . , θM ). The average probability
distribution for the true label given an input image over the M
datasets is obtained as (1/M)

∑M
i=1 p(LI |I, θi). Similarly, we can

estimate the label probability distribution for any number of
atlases less than or equal to M .

Algorithm 1: Semi-supervised learning method.

INPUT: atlas {I0, LI0}, brain images {I1, I2, · · · , IN}
1: Assign pseudo-labels {L′I1 , · · · , L

′

IN
} based on image registra-

tion using the atlas.
2: Estimate initial CNN parameters θ trained on the atlas and on
the pseudo-atlases. The proposed method (simple) is finished at
this step.
3: K = 1
while K ≦ 5 do

4: E-step, compute MAP estimate of the true label for each
unlabeled brain image,

L̂In = argmax
LIn

p(LIn |L
′

I , I, θ ).

5: M-step, update CNN parameters given the estimated true
label images,

θ ← argmax
θ ′
{ln p(LI0 |I0, θ

′)+
N∑

n=1

ln p(L̂In |In, θ
′)+ ln p(θ ′|α)}.

6: K = K + 1
end while
OUTPUT: θ

4. Experimental evaluation

4.1. Evaluation metric

We compared our proposed method with the baseline meth-
ods by two metrics: the Dice coefficient (DC) and absolute volume
difference (AVD). Let Ga be a set of voxels annotated by experts
as a certain region, i.e., with a single label a, and Sa be another
set of voxels to which a segmentation method assigned the same
label a. The DC of this region a is

DC(Ga, Sa) = 2
|Ga ∩ Sa|
|Ga|+|Sa|

, (20)

where |·| is the number of voxels in the set. The DC measures the
similarity of the two sets, which is equivalent to the F-measure,
that is, the harmonic mean of precision and recall. The AVD of a
single region a is

AVD(Ga, Sa) =
|Vga − Vsa |

Vga
, (21)

where Vga is the volume assigned by the label a of this region
as the ground truth (human annotation) and Vsa is that of the
segmentation result. Further, |·| denotes the absolute value in
the above equation. The AVD is a popular measure, because the
volumes of brain regions can be important biomarkers for clinical
use.
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Table 1
Dice coefficient (DC) for each of cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM). Each value in mean ± std. The highest mean DC using only
one atlas is in bold text. #labeled means the number of atlases (labeled images) and #unlabeled is the number of unlabeled images.
Method #labeled #unlabeled CSF GM WM Average

LP (SyN) 1 0 0.78± 0.06 0.82± 0.03 0.76± 0.02 0.79± 0.02
VoxResNet 1 0 0.61± 0.17 0.87± 0.06 0.87± 0.05 0.78± 0.07
VoxResNet + data augmentation 1 0 0.71± 0.15 0.88± 0.06 0.88± 0.03 0.82± 0.07
Proposed (simple) 1 9 0.81± 0.05 0.89± 0.02 0.87± 0.02 0.86± 0.02
Proposed (full) 1 9 0.82± 0.05 0.90± 0.02 0.88± 0.02 0.86± 0.02

VoxResNet 10 0 0.87± 0.04 0.93± 0.01 0.92± 0.02 0.91± 0.02

Table 2
Absolute volume difference (AVD) for each of cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM). Each value in mean± std., the lowest mean AVD
using only one atlas is in bold text. #labeled means the number of atlases (labeled images) and #unlabeled is the number of unlabeled images.
Method #labeled #unlabeled CSF GM WM Average

LP (SyN) 1 0 0.18± 0.13 0.06± 0.05 0.08± 0.06 0.11± 0.06
VoxResNet 1 0 0.65± 0.89 0.14± 0.11 0.18± 0.12 0.32± 0.34
VoxResNet + data augmentation 1 0 0.45± 0.59 0.12± 0.11 0.12± 0.11 0.23± 0.25
Proposed (simple) 1 9 0.15± 0.10 0.05± 0.03 0.07± 0.05 0.09± 0.04
Proposed (full) 1 9 0.11± 0.09 0.04± 0.04 0.09± 0.06 0.08± 0.04

VoxResNet 10 0 0.09± 0.07 0.05± 0.02 0.06± 0.04 0.07± 0.03

4.2. Human brain image

In this experiment we evaluated our proposed method and
the baseline methods, by using human MR images registered at
the Internet Brain Segmentation Repository (IBSR). This dataset
contains T1-weighted brain images (K = 1) of 18 subjects with
a 1.5-mm slice thickness (256 × 128 × 256). Expert anatomists
annotated each voxel of the scans as belonging to one of four
regions: background, cerebrospinal fluid (CSF), gray matter (GM),
and white matter (WM). We first aligned their spatial resolution
to be isotropic (1 mm × 1 mm × 1 mm) using the bilinear
interpolation of the images. Subsequently, we pre-processed the
T1-weighted brain images following the paper in which VoxRes-
Net was originally proposed (Chen et al., 2017), where we used
a difference of Gaussian filter and applied the contrast limited
adaptive histogram equalization (CLAHE) to enhance edges in the
images (Pizer, Amburn, Austin, Cromartie, Geselowitz, Greer, ter
Haar Romeny, Zimmerman, & Zuiderveld, 1987).

Among 18 subjects, 6 were used for the final test and 2
subjects were used for validation, because of the avoidance of
possible bias due to the usage of only 1 subject. We randomly
chose these validation and test subjects. Using the remaining 10
subjects, we constructed six segmentation methods with different
settings.

• image registration-based method with one atlas. (i.e., label
propagation of SyN implemented using ANTs (Avants, Tusti-
son, Song, Cook, Klein, & Gee, 2011), http://stnava.github.io/
ANTs/)
• VoxResNet trained on one atlas
• VoxResNet trained on one atlas with data augmentation

applying spatial transformations on both the brain image
and label image of the one atlas.
• VoxResNet trained by the simple version of our proposed

method employing one atlas and nine unlabeled images
• VoxResNet trained by the full version of our proposed

method employing one atlas and nine unlabeled images
• VoxResNet trained on the set of ten atlases

Here, an atlas refers to a pair of T1-weighted brain image from
a single subject and the corresponding label image. It should be
noted that step 1 in our algorithm (see Algorithm 1) is the image
registration. For the sake of fair comparison, we employed the
estimated transformations in step 1 of our algorithm as the spatial
transformations applied in the (VoxResNet + data augmentation,

one atlas) setting. Since there are several hyperparameters in
SyN and VoxResNet, they were tuned to obtain the best perfor-
mance in terms of DC for two validation images. In the proposed
methods, we set the parameter σ in the softmax function at 1
mm, which is the same as the voxel size of the image. Repeating
the experiments five times with different combinations of the
training, validation, and test brain images, we evaluated the mean
and standard deviation (std.) of the two metrics, DC and AVD, for
each of the six settings above.

Tables 1 and 2 list the mean and std. for testing DC and AVD,
respectively. Under the condition that one atlas is available, our
proposed method (full version) exhibited the best performance
in terms of both DC and AVD, which is almost comparable to
the performance of VoxResNet using 10 atlases. A comparison of
SyN and VoxResNet shows that the DNN (in this case, VoxResNet)
was not effective when only one labeled image was employed. In
this case the registration-based method (SyN) was fairly effective.
In our method, semi-supervised learning employing the registra-
tion method was effective in leveraging unlabeled brain images
by probabilistically attaching pseudo-labels based on the image
registration.

Fig. 2.A shows the segmented brain images of two subjects,
in which green, yellow, and brown represent CSF, gray matter,
and white matter, respectively. We choose the two subjects: the
upper one (subject 1) is of the typical AVD value by the proposed
method and the bottom one (subject 2) is of the worst AVD
value by the proposed method. For these two subjects, VoxResNet
trained by one atlas (Fig. 2.A) assigned the white matter label
to a wider region of voxels than the ground truth, especially in
subject 2. On the other hand, VoxResNet trained by the simple
and full versions of our method assigned the same label less than
the ground truth. Fig. 2.B shows the image of the segmentation
errors (red region) between the manual segmentation and other
segmentations. This result shows that the mislabels tend to be
located at the white and gray matter boundaries, and the error
region of the label propagation (by SyN) is larger than that of the
proposed method.

Fig. 2.C visualizes the mean and std. of the AVD and DC values
(Tables 1 and 2). We applied a paired t-test to the test perfor-
mance, so that the asterisk indicates the significant difference
(p < 0.05) between the proposed method (full version) and
the other methods. We found that the VoxResNet sometimes
mislabeled the white and gray matters (Fig. 2.A). Correspondingly,
Fig. 2.C shows the significant difference in AVD between the
VoxResNet and the proposed method (full version). Similarly,

http://stnava.github.io/ANTs/
http://stnava.github.io/ANTs/
http://stnava.github.io/ANTs/
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Fig. 2. Segmentation result in IBSR. (A) The segmented labels of the two subjects. The green, yellow, and brown represent CSF, gray matter, and white matter,
respectively. (i) Original T1-weighted image; (ii) segmentation result of label propagation (LP) based on one atlas; (iii) segmentation result of VoxResNet(VRN)
trained based on one atlas; (iv) segmentation result of VoxResNet trained based on one atlas and nine unlabeled images by the simple version; (v) segmentation
result of VoxResNet trained based on one atlas and nine unlabeled images by the full version of our proposed method; (vi) ground truth label. (B) The images of the
segmentation errors. The red region indicates the mislabeling between the methods’ and manual labels. (i) Segmentation errors of label propagation (LP) based on
one atlas; (ii) segmentation errors of VoxResNet trained based on one atlas; (iii) segmentation errors of VoxResNet trained based on one atlas and nine unlabeled
images by the simple version; (iv) segmentation errors of VoxResNet trained based on one atlas and nine unlabeled images by the full version of our proposed
method. (C) The bar plot of the average performance of mean and std. of AVD and DC. The upper and bottom panels show the AVD and DC, respectively. An asterisk
means the significant difference between the proposed method (full version) and the other methods with the paired t-test (p < 0.05) . (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. How AVD (left) and DC (right) are dependent on the volume fraction of brain regions in IBSR. The horizontal axis is the logarithm of the volume fraction
of brain region: CSF, WM and GM. The vertical axis is the AVD (left) and DC (right). The black, blue, red and magenta circles represent the means of the AVD and
DC of the proposed method (full version), VoxResNet(VRN) with 10 atlases, label propagation (LP) with SyN and VoxResNet with one atlas, respectively. The colored
lines denote the linear regression of the values of AVD and DC for the test images . (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

observation in Fig. 2.B suggested that the errors on the white and
gray matter boundaries led to the significant difference between
the proposed method (full version) and the other methods. That
is, the proposed method successfully reduced the bias so that its
segmented image is much closer to the ground truth than those
by the other methods.

The average computational time of the proposed method (full
version) was about 65 h with 5 iterations in our EM algorithm,
and the average computational time of the simple VoxResNet in
our implementation was about 12 h, when both were working on

a cluster machine with a CPU of Intel Xeon E5-2640 v4 2.40 GHz
and 4 GPUs of Nvidia GeForce 1080Ti.

Fig. 3 shows the relation between the metrics and the volume
fraction of the brain regions. The horizontal axis is the logarithm
of the volume fraction of the brain region without background
region. The black, blue, red and magenta circles represent the
means of the AVD and DC of the proposed method (full ver-
sion), VoxResNet with 10 atlases, label propagation with SyN
and VoxResNet with one atlas, respectively. The lines with the
corresponding color show the linear regression of the AVD and
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Fig. 4. AVD (left) and DC (right) when the number of atlases was changed in the proposed method (ensemble). The mean performances of the proposed method
(ensemble), VoxResNet(VRN) using 10 atlases, label propagation (LP) using SyN and VoxResNet using one atlas are represented by black, blue, red and magenta
colors, respectively. The horizontal axis indicates the number of atlases used in the proposed method (ensemble). We show the std. of the AVD of the proposed
method (ensemble) with the black errorbar and that of VoxResNet using 10 atlases with blue region. The std. of the other methods was omitted for visibility . (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

DC for the test images. The AVD decreases and the DC increases
when the volume fraction increases in all cases. The regression
slopes of the proposed method and the VoxResNet with 10 atlases
are similar, whereas the slope of the VoxResNet with one atlas
is very different from the others. This is because the AVD and
DC of CSF is rather high and low, respectively, in the VoxResNet
with one atlas. This result suggests that the VoxResNet with one
atlas would not be reliable, especially in the small region like CSF.
Comparing to the VoxResNet with one atlas, the proposed method
with one atlas worked well even in CSF.

So far, we showed the results by the proposed method when
it employed one atlas. Here, we generalize the proposed method
into usage of multiple atlases (see Method), which we call the
proposed method (ensemble). Fig. 4 shows the AVD and DC of the
proposed method (ensemble) compared with the VoxResNet with
10 atlases, the label propagation with SyN and the VoxResNet
with one atlas, which are represented by the black, blue, red
and magenta curves or lines, respectively. The horizontal axis
indicates the number of atlases, which was used in the proposed
method (ensemble). The AVD (DC) with respect to the number
of atlases monotonically decreased (increased). This figure shows
that the proposed method (ensemble) using multiple atlases out-
performed the label propagation and the VoxResNet trained on
one atlas both in term of AVD and DC. The AVD of the proposed
method was lower than the VoxResNet with 10 atlases when the
number of atlases in the ensemble learning was more than 4.
The DC of the proposed method (ensemble) was lower than the
VoxResNet with 10 atlases, although the distribution of DC of the
proposed method (shown by the black errorbar) was close to that
of the VoxResNet with 10 atlases (shown by the blue region). This
result also suggests that the proposed method (ensemble) with 4
atlases outperformed any other method, including the VoxResNet
with 10 atlases in terms of AVD.

4.3. Marmoset brain image

Using our original dataset consisting of marmoset brain im-
ages, we also compared our segmentation method with the base-
line methods. Okano and colleagues at the Riken Center for
Brain Science have imaged marmoset ex vivo brains by diffusion-
weighted magnetic resonance imaging (DWI) using a b-value of
5,000, employing a Bruker 9.4 T scanner (Okano et al., 2015,
2016). They provided us with 13 marmoset DWI (b0) images, all
of which were annotated by expert anatomists. The task here is
to reproduce these human annotations; that is, to achieve voxel-
wise segmentation into six classes: background, white matter
(WM), right cerebral cortex (RCC), left cerebral cortex (LCC),

subcortical gray matter (SGM), and cerebellum cortex (CC). We
pre-processed the DWI images using spherical harmonics (K =
128) following the previous study (Schnell et al., 2009), and
then standardized the image intensities such that the mean and
variance for each image are zero and unity, respectively.

We divided the 13 images from different animals into 2 val-
idation images to avoid possible bias due to the usage of only
1 animal, 6 test images, and the remaining training images. The
number of test images, six, was set to the same as the number
of test subjects in the application to human MR images. We ran-
domly chose these validation and test images. Using five images
from the remainder, we compared five segmentation methods
with different settings: label propagation of SyN with one atlas,
VoxResNet trained based on one atlas, VoxResNet trained based
on one atlas and four unlabeled DW images by the simple version,
VoxResNet trained based on one atlas and four unlabeled DW im-
ages by the full version of our proposed method, and VoxResNet
trained based on five atlases. Both SyN and VoxResNet include
hyperparameters that are tuned as to maximize DC for the two
validation images. In the proposed methods, we set the parameter
σ in the softmax function at 1 mm. This is larger than the voxel
size of the image, but the preliminary analysis found that setting
the parameter as the same as the voxel size 0.3 mm resulted in
poorer performance than that with the current setting.

Tables 3 and 4 provide the mean and std. of DC and AVD, re-
spectively. Similar to the experiment on the human MRI dataset,
both the simple and full versions of our proposed method pre-
sented results that are more accurate and stable than those by
the baseline methods, when using the same number of labeled
images (atlases). Moreover, the performance of our full version
is comparable to that of VoxResNet trained on five atlases. This
means our semi-supervised learning method successfully per-
formed the segmentation that is generalizable into different in-
dividuals, by appropriately incorporating the similarity in DW
images between different individuals.

Fig. 5.A shows the segmented brain images of two subjects,
in which green, yellow, and brown represent CSF, gray matter,
and white matter, respectively. We choose the two subjects: the
upper one (subject 1) is of the typical AVD value by the proposed
method and the bottom one (subject 2) is of the worst AVD value
by the proposed method. In subject 1, both of the VoxResNet and
the proposed method (simple version) produced mislabeling in
the gray matter of the occipital cortex (bottom region). Because
the signal of the bottom region in subject 2 seemed to have
been attenuated, the segmentation by the VoxResNet was directly
affected by this attenuation. On the other hand, the segmentation
by the proposed method (full version) covered wider region of the
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Table 3
Dice coefficient (DC) for each of white matter (WM), right cerebral cortex (RCC), left cerebral cortex (LCC), subcortical gray matter (SGM), and cerebellum cortex
(CC). Each value in mean± std. The highest mean DC using only one atlas is in bold text. #labeled means the number of atlases (labeled images) and #unlabeled is
the number of unlabeled images.
Method #labeled #unlabeled WM RCC LCC SGM CC Average

LP (SyN) 1 0 0.73± 0.01 0.83± 0.02 0.81± 0.02 0.85± 0.02 0.73± 0.05 0.79± 0.02
VoxResNet 1 0 0.88± 0.02 0.93± 0.02 0.93± 0.02 0.89± 0.04 0.78± 0.14 0.88± 0.05
Proposed (simple) 1 4 0.91± 0.01 0.95± 0.01 0.95± 0.01 0.93± 0.00 0.92± 0.01 0.93± 0.01
Proposed (full) 1 4 0.91± 0.01 0.96± 0.01 0.95± 0.01 0.94± 0.00 0.93± 0.01 0.94± 0.01

VoxResNet 5 0 0.92± 0.01 0.96± 0.01 0.96± 0.01 0.95± 0.00 0.93± 0.01 0.94± 0.01

Table 4
Absolute volume difference (AVD) for each of white matter (WM), right cerebral cortex (RCC), left cerebral cortex (LCC), subcortical gray matter (SGM), and cerebellum
cortex (CC). Each value in mean±std. The lowest mean AVD using only one atlas is in bold text. #labeled means the number of atlases (labeled images) and #unlabeled
is the number of unlabeled images.
Method #labeled #unlabeled WM RCC LCC SGM CC Average

LP (SyN) 1 0 0.049± 0.017 0.037± 0.035 0.052± 0.025 0.052± 0.043 0.091± 0.022 0.056± 0.017
VoxResNet 1 0 0.038± 0.023 0.022± 0.029 0.039± 0.017 0.050± 0.012 0.221± 0.210 0.074± 0.051
Proposed (simple) 1 4 0.024± 0.020 0.016± 0.016 0.016± 0.024 0.044± 0.013 0.036± 0.019 0.027± 0.013
Proposed (full) 1 4 0.023± 0.016 0.014± 0.013 0.021± 0.011 0.010± 0.007 0.034± 0.018 0.020± 0.005

VoxResNet 5 0 0.042± 0.014 0.012± 0.016 0.026± 0.009 0.009± 0.005 0.035± 0.025 0.025± 0.005

Fig. 5. Segmentation results in the marmoset datasets. (A) The segmented labels of the two subjects. The green, yellow, and brown represent CSF, gray matter,
and white matter, respectively. (i) Original T1-weighted image; (ii) segmentation result of label propagation (LP) based on one atlas; (iii) segmentation result of
VoxResNet(VRN) trained based on one atlas; (iv) segmentation result of VoxResNet trained based on one atlas and nine unlabeled images by the simple version; (v)
segmentation result of VoxResNet trained based on one atlas and nine unlabeled images by the full version of our proposed method; (vi) ground truth label. (B) The
images of the segmentation errors. The red region indicates the mislabeling between the methods’ and manual labels. (i) Segmentation errors of label propagation
(LP) based on one atlas; (ii) segmentation errors of VoxResNet trained based on one atlas; (iii) segmentation errors of VoxResNet trained based on one atlas and
nine unlabeled images by the simple version; (iv) segmentation errors of VoxResNet trained based on one atlas and nine unlabeled images by the full version of our
proposed method. (C) The bar plot of the mean and std. of AVD (left) and DC (right). An asterisk means the significant difference between the proposed method
(full version) and the other methods with the paired t-test (p < 0.05) . (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

occipital cortex than by the VoxResNet. Fig. 5.B shows difference
(red region) between the manual and each method. Similar to the
case of the IBSR dataset, the mislabels mostly exist in the white
and gray matter boundaries, and moreover, the error regions of
the label propagation by SyN are likely larger than those of the
proposed method.

Fig. 5.C depicts the mean and std. of the AVD and DC val-
ues (Tables 3 and 4). An asterisk in these panels signifies the

significant difference (paired t-test, p < 0.05) of AVD or DC
between the proposed method (full version) and the baseline
method. Fig. 5.A shows the difference in labeling in the gray
matter of the VoxResNet and the proposed method (full ver-
sion), suggesting that the VoxResNet introduced mislabels to the
gray matter regions. Due to such mislabels, there has been the
significant difference between the proposed method (full ver-
sion) and the other method (Fig. 5.C). Similarly, observation in
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Fig. 6. How AVD (left) and DC (right) are dependent on the volume fraction of brain regions in the marmoset dataset. The horizontal axis is the logarithm of
the volume fraction of brain region: CC, SGM, WM, LCC and RCC. The black, blue, red and magenta circles represent the means of the AVD (DC) of the proposed
method (full version), VoxResNet(VRN) with 5 atlases, label propagation (LP) with SyN and VoxResNet with one atlas, respectively. The colored lines denote the
linear regression of the values of AVD and DC for the test images . (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 5.B suggested that the errors on the white and gray matter
boundaries led to the significant difference between the proposed
method (full version) and the label propagation. These indicate
that the proposed method (full version) reduced this bias, so that
its segmented image is much closer to the ground truth than
those by the other methods in the marmoset datasets.

Here, we show the relation between the metrics and the
volume fraction of the brain regions using the marmoset dataset
in Fig. 6. The horizontal axis is the logarithm of the volume
fraction of the brain region without the background region. The
black, blue, red and magenta circles represent the means of the
AVD and DC of the proposed method (full version), VoxResNet
with 10 atlases, label propagation with SyN and VoxResNet with
one atlas, respectively. The lines with the corresponding color
show the linear regression of AVD and DC for the test images.
The ascending order of the volume fraction is as follows: CC,
SGM, WM, LCC and RCC. This result was similar to that of the
human dataset (Fig. 3). The AVD decreased (the DC increased)
when the volume fraction increased in all the methods. The
regression slopes of the proposed method, the label propagation
and the VoxResNet with 10 atlases behaved similarly, whereas
the slope of the VoxResNet with one atlas was very different from
the others. This observation also suggests that the VoxResNet
with one atlas would not be reliable, especially in the small
region. Comparing to the VoxResNet with one atlas, the proposed
method with one atlas worked well in the small region, such as
cerebellum cortex (CC) in the marmoset images.

5. Discussion

Our semi-supervised image segmentation method achieved
better segmentation than the existing registration-based and
DNN-based methods, given the same number of labeled images;
the advantage of our method was prominent especially on small
regions such as the CSF in the human brain image and the
cerebellum cortex in the marmoset brain image. Because the loss
function for training a DNN, eq. (19), is the sum of voxel-wise
losses, the usual supervised learning of the DNN puts larger em-
phasis on larger regions. Our semi-supervised learning method,
on the other hand, successfully segmented these small regions
even with limited amount of annotation, owing to introducing
unlabeled images into the training process.

When a DNN was trained based only on one labeled image,
the segmentation accuracy of the trained DNN varied as to reflect
the characters of the individual image used for training. The data
augmentation technique, which essentially entails the secondary

use of the same image, cannot enough reduce such dependence
of the segmentation accuracy. On the other hand, our proposed
method succeeded in performing reasonably good segmentation
in a stable manner, even when a single labeled image is provided
for training; that is, leveraging unlabeled images for training
successfully regularized the trained DNN.

There is an existing study that employed the EM algorithm
in the scenario of weakly semi-supervised learning for image
segmentation problems (Papandreou et al., 2015). Our method
is different from this previous method, because our method in-
corporates the stochastic process of pseudo-labeling of MRI im-
ages as a particular probabilistic model, whereas the previous
study above regarded image-level labels or bounding-box anno-
tations as observed variables and the pixel-level segmentation as
a hidden variable, to deal with weakly semi-supervised learning
situations for general 2D images. Another study using the EM
algorithm presented a semi-supervised clustering approach for
brain segmentation (Portela, Cavalcanti, & Ren, 2014). It was
necessary to perform clustering for segmenting new images, ac-
cording to this method. Our method based on DNNs has an
advantage in the computation cost when applied to new images
(it takes only 30 s in our computer environment), though the
computational cost in the learning phase is relatively high. The
decrease in the computational cost remains as a future study.

Although we also implemented an exact EM algorithm which
obtains the exact posterior in its E-step, instead of using the
hard-EM approximation, we found that the exact EM performed
poorly on our segmentation experiments. When applied to the
human MRI dataset, the DNN trained by the exact EM predicted
most of the voxels as being either background or gray matter.
We speculate that this poor performance of the exact EM came
from the imbalance in the labels attached to the training datasets.
To implement the exact EM after removing such negative effects
from the label imbalance remains as another future study.

In this experiment, we assigned pseudo-labels to unlabeled
brain images, by simply propagating labels defined on an atlas,
directly onto the unlabeled brain images. To assign more reliable
pseudo-labels, we can employ sophisticated methods such as
mutual registration (Gass, Székely, & Goksel, 2012). The mutual
registration considered multiple paths to propagate labels defined
on the atlas onto another using the other unlabeled brain images,
which is beneficial for reducing the bias to the selected atlas.

We generalized the proposed method such to deal with an ar-
bitrary number of atlases using the ensemble learning approach.
We showed the proposed method with 4 atlases outperformed
the other methods, including the VoxResNet with 10 atlases, in
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the evaluation of AVD. However, the DC of the proposed method
with any number (less than 10) of atlases was lower than the
VoxResNet with 10 atlases. It remains as a future study to im-
prove the generalization of the proposed method to show better
performance not only in AVD but also in DC.

Our method thus needed 40% of the annotated images to
achieve the comparable performance (in terms of AVD) to what
achieved by VoxResNet, in particular for this dataset. This result
might not be fully comprehensive due to the inaccessibility to
even larger sets of annotated images. However, we also think
that these results suggest the possibility to decrease the efforts of
manually annotating brain 3D images, which is indeed laborious
in our works of large-scale brain image processing.

6. Conclusion

This paper proposed a semi-supervised learning framework to
have a DNN-based image registration method, which is trained
based not only on a relatively small number of annotated (la-
beled) images, but also on a relatively large number of unlabeled
images. The originally unlabeled images were pseudo-labeled
by the label propagation method. Extensive experiments on the
human and marmoset brain image datasets showed that our pro-
posed method attained more accurate and stable segmentation
than those by the existing registration-based and DNN-based
methods. Since the current spatial observation model that repre-
sents the mislabeling process is rather simple, there could still be
a large room for improving our proposed semi-supervised train-
ing algorithm by developing a further sophisticated observation
model.
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